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Tutonal 3
Bayesian data analysis



Goals of tutorials

My aim is to
« present overview of Bayesian and probabilistic modeling

* cover basic Bayesian methodology relevant to nuclear physics,
especially cross section evaluation

e point way to how to do it

e convince you that

» Bayesian analysis 1s a reasonable approach to coping with
measurement uncertainty

* Many thanks to my T-16 colleagues
» Gerry Hale, Toshihiko Kawano, Patrick Talou



Outline — four tutorials

1. Bayesian approach
probability — quantifies our degree of uncertainty
Bayes law and prior probabilities
2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo
Bayesian update of cross sections using Jezebel criticality expt.
3. Bayesian data analysis
linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data
4. Bayesian calculations
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data



Slides and bibliography

» These slides can be obtained by going to my public web page:
http://public.lanl.gov/kmh/talks/

e link to tutorial slides

 short bibliography relevant to topics covered in tutorial
« other presentations, which contain more detail about material presented here

» Noteworthy books:

* D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical
development of the Bayesian approach with an experimental physics slant

* D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear
Science and Technology (1991); lots of good advice relevant to
cross-section evaluation

* G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review,
(World Scientific, New Jersey, 2003); Bayesian philosophy

* A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view

 W.R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic
MCMC text 5



Types of measurement uncertainties

* Generally two major types of uncertainties

» random uncertainty — different for each measurement of same quantity
* 1n repeated measurements, get a different answer each time
 often assumed to be statistically independent, but aren’t always
» systematic uncertainty — same for each measurement within a group
« component of measurements that remains unchanged
 for example, caused by error in calibration or zeroing

e this kind of uncertainty needs more attention
 Nomenclature varies
» physics — random uncertainty and systematic uncertainty

» statistics — random and bias

* metrology standards (NIST, ASME, ISO) —
random and systematic uncertainties (now)

» trend toward quoting standard error



Measurement uncertainties 1n cross sections

In cross-section experiments, sources of uncertainties include:

e Random uncertainties

>

>

counting statistics for primary process and monitoring process
background

« Systematic uncertainties

>

>

>

|

>

|

integrated beam intensity

target thickness, target impurities
detector efficiency

count rate corrections

geometry

corrections for contamination from other processes

* Try to reduce systematic uncertainties through calibration, design

 Random uncertainties usually easy to assess;

systematic uncertainties require judgment



Characterization of measurement uncertainties

The best analysis 1s based on a thorough understanding of
probabilistic nature of the fluctuations in the data

In nuclear physics we are fortunate to have control over
measurements; we can calibrate and study apparatus

Look closely at measurements to characterize random fluctuations

|

>

>

shape of pdf

standard deviation (variance) of fluctuations,

presence of outliers

covariance, correlation: cov(d)=C, = <(d —d )d — d )T>

usually need to assume stationarity, same characteristics everywhere

autocorrelation function useful for estimating correlations

FOEEDWION )



Neutron fission cross section data for 23°Pu

239Pu, 14.7 Mev

Graph shows 16 measurements

of fission cross-section for sy 15 —
23%Py at 14.7 MeV 2o 1587 | E—
Data exhibit fair amount of o |
Scatter ; rll_.l':;hgdaazvi 1952 —1:
Quoted error bars get smaller Mowsisee =7
With time 125:::;:::3; 200 —— |

. - 7 _ _ 4 2 2.2 2.4 2.6 2.8
Minimum X< =44.6 (p =10 ) Fission Cross Section (b)
indicates a prOblem Chirsquared distribution for 15 DOF
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» dispersion of data larger than
quoted error bars by factor /3
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Neutron fission cross-section data
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Neutron Energy (MeV) plot from P. Talou

* Neutron cross sections measured by many experimenters
» sometimes data sets differ significantly
» often little information about uncertainties, esp. systematic errors
» many directly measure ratios of cross sections, e.g., ?**Am/ 23U

» thorough analysis must take into account all discrepancies 10



Inference using Bayes rule

 We wish to infer the parameters a of a model M, based on data d

« Use Bayes rule, which gives the posterior:
plald,MI)cp(d|aMI)pla|MI)

» where [ represents general information we have about the situation

» p(d|a, M, I) is the likelihood, the probability of the observed data,
given the parameters, model, and general info

» pla | M, ) 1s the prior, which represents what we know about the
parameters exclusive of the data

« Note that inference requires specification of the prior

11



Likelithood

Form of the likelithood p(d| a, I) based on how we model the
uncertainties in the measurements d

Choose pdf that appropriately describes uncertainties in data
» Gaussian — good generic choice
» Poisson — counting experiments
» Binomial — binary measurements (coin toss ...)

Outliers exist

» likelithood should have a long tail, 1.e., there is some probability of
large fluctuation

Systematic errors
» caused by effects common to many (all) measurements

» model by introducing variable that affects many (all)
measurements; marginalize out

12



The model and parameter inference

We write the model as

y=y(x,a)

» where y 1s a vector of physical quantities, which 1s modeled
as a function of the independent variables vector x and
a represents the parameter vector for the model

In inference, the aim 1s to determine:

» the parameters a from a set of n» measurements d; of y under
specified conditions x;,

» and the uncertainties in the parameter values

This process 1s called parameter inference, model fitting (or
regression); however, uncertainty analysis
1s often not done, only parameters estimated

13



The likelihood and chi-squared

The form of the likelihood p(d | a, I) depends on how we model
the uncertainties in the measurements d

Assuming the error in each measurement d; 1s normally
(Gaussian) distributed with zero mean and variance ¢, and that
the errors are statistically independent,

p(d | a) OCHeXp|:—[di_yi(a)] :|

207

1

where y.1s the value predicted for parameter set a
The above exponent 1s one-half chi squared

Zz :—210g[p(d | a)] :Z|:[dz _;_/lz(a)] :|

l I

For this error model, likelihood is p(d | a) o exp(—% %)

14



Likelihood analysis

* For a non-informative uniform prior,
the posterior 1s proportional to the likelihood

» Given the relationship between chi-squared and the likelihood,
the posterior 1s

pla|d) o« p(d|a) cexp(—7 1)

« Parameter estimation based on maximum likelihood 1s
equivalent to that based on minimum chi squared (or least
squares)

15



Likelihood analysis — chi squared

When the errors in each measurement are Gaussian distributed and
independent, likelihood 1s related to chi squared:

2 d — v (a)
p(d|a)0C€Xp(—%Z ):exp{_% . |:[ ) y;(“)] :|}

O.

l

near minimum, X2 is approximately quadratic in the parameters a
2 A T A 2/ A
v (a)= %(a—a) K(a—a)+;( (a)

» where d 1s the parameter vector at minimum x? and
K is the x? curvature matrix (aka the Hessian)

The covariance matrix for the uncertainties in the estimated
parameters 1S

cov(a) = <(a —d)(a— &)T> = C=2K"

16



Characterization of chi squared

Expand vector y around yY, and approximate:

oy,

yi:yi(xiﬂa):yio_l_z
7 o0a;| g
a

The derivative matrix 1s called the Jacobian, J

0
(@a,—a;)+--

Estimated parameters @ minimize X2 (MAP estimate)

As a function of a, X? 1s approximately quadratic in @ — d

T
2 . 1 A A 2 /A
r(@=73(a-a) K(a—a)+ y(a)
» where K 1s the x? curvature matrix (aka the Hessian);
52}(2
* - da Joa |,
Jacobian useful for finding min. x2 , i.e., optimization

K]

. K=2JAJ"; A=diag(c?, 0%, 0,7, ..)
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Multiple data sets and Gaussian prior

* Analysis of multiple data sets

» to combine the data from multiple, independent data sets into a
single analysis, the combined chi squared 1s

2 2
Xall = ZZ k
k
» where p(d, | a, I) 1s the likelithood from kth data set
* Include Gaussian priors through Bayes theorem

plald,I)oc p(d|a,l) pla|l)
» for a Gaussian prior on a parameter g, 2
_ _ 1,2 (af_af)
“logplald,l)=pla)=74"+———
O

» where &'j 1s the default value for a, and sz 1s assumed variance

18



Chi-squared distribution

Plot shows %2 distribution for

number of degrees of freedom,
v =100

Generally,

Chi-squared distribution for 100 DOF

<
O
s

<
=
N

» Mcan —=v
» Tms dev = +2/v

Cumulative distribution gives p . .
value, probability of X> 2 observed ’ “Chi-squared s
value

<
O
—

Probability Density

p often used a measure of
goodness of fit

Checks self-consistency of models
used to explain data (weakly)
19



Goodness of fit

Check of minimum chi-squared value only weakly confirms
validity of models used
Chi-squared value depends on numerous factors:

» assumption that errors follow Gaussian distribution and are
statistically independent

» proper assignment of standard deviation of errors
» correctness of model used to calculate measured quantity

» measurements correspond to calculated quantity (proper
measurement model)

Thus, a reasonable chi-squared p value does not necessarily
mean everything 1s OK, because there may be compensating
effects

20



Fit linear function to data — minimum %?

Linear model: y=a-+bx s

Fit: O yata = 0.20; ey =

| 10 data points

Best fit |

Simulate 10 data points, o, =0.2 8
exact values: a=0.5 b»=0.5 o
Determine parameters, intercept > 2
a and slope b, by minimizing chi- N
squared (standard least-squares 05
analysis) 0%
Result: z2. =4.04 p=0.775

4=0484 o, =0.127 >

h=0.523 o, =0.044 06|

R 1 —0.867 Q

{—0.867 1 } >

Strong correlations between 0.2}

parameters a and b




Sampling from correlated normal distribution

* Want to draw samples x from multi-variate normal distribution
with known covariance C,

» Important to include correlations among uncertainties, 1.e., off-
diagonal elements
* Algorithm:

» perform eigenanalysis of covariance matrix of d dimensions

C,=UAU"'

where U 1s orthogonal matrix of eigenvectors and
A 1s the diagonal matrix of eigenvalues

» draw d samples from unit variance normal distribution, &
» scale this vector by A.”
» transform vector into parameter space using the eigenvector matrix

. 1/2
» to summarize: X = UA"*§
22



Linear fit — uncertainty visualization

Fit. o, ., =0.20; Ogys = 0.00

* Uncertainties in parameters are . | . |
represented by Gaussian pdf in 2-D 351 12 MC samples |
parameter space

» correlations evidenced by tilt in
scatter plot

» points are samples from pdf

e Should focus on implied o : 2 . y :
uncertainties in physical domain _ _
. . Scatter plot
» model realizations drawn from 0.8} P
parameter uncertainty pdf
» these appear plausible — 5 e TP
called model checking 0.4l ’

» this comparison to the original data
confirms model adequacy 0.2

» called predictive distribution 02 04 06 08 23




Linear fit — correlations are important

Plots show what happens 1f off-
diagonal terms of covariance
matrix are ignored

Correlation matrix 1s

i

Model realizations show much
wider dispersion than consistent
with uncertainties in data

No tilt 1n scatter plot — uncorrelated

Correlations are important !

Fit. o, ., =0.20; Ogys = 0.00

12 MC samples |

o 0.5}

0.4f

0.3f
0.2r

Scatter plot |

0.1

0.2 04 06 08 924




Probabilistic model for additive error

Represent systematic additive uncertainty in measurements by
common additive offset A: y.=a+bx, +& +A= f(x;a,b)+¢& +A

» where the ¢, represent the random fluctuations

Bayes law gives joint pdf for all the parameters

p(a,b,Aly,x)=p(yla,b,A,x)p(a) p(b) p(A)
where priors p(a), p(b) are uniform and p(A) assumed normal

Writing p(a,b,A| y,x) « exp{—¢} and assuming normal
distributions

20 = Z(yi ACE czz,b)—A)z S

o o

l

Pdf for x obtained by integration: p(a,b|y,x)= '[ p(a,b,A|y,x)dA

This model equivalent to standard least-squares approach by

including A 1n fit, and using just results for a and b *



Linear fit — systematic uncertainty

Introduce systematic offset A . i i e
with uncertainty o, = 0.3 a5t Best ﬁt} -
Linear model: y=a+bx+A 2_2: |
Determine parameters, a, b, and ~ 2

offset A by minimizing chi- 1

Systematic
error bar

squared (standard least-squares 05
analysis) % a 5 ; s
Result: A=0
G=0.484 o, =0326

0.523 o0, =0.044

1 —0.338
R =
{—0.338 1 }

Same parameters, but o, much
larger 26



Linear fit — systematic uncertainty

 Show uncertainties in inferred ) Fit 0,,,, = 020; 0, , =030
models |

» colored lines are model 3
realizations drawn from parameter 22
uncertainty pdf | e |

. Systematic

» these appear plausible, (= = error bar

considering additional systematic S

uncertainty, o, =0.3 0 1 A 4 5

27



Role of simulated data

« Simulated data are crucially important for testing algorithms
» treat simulated data as is actual measurements
» can compare algorithmic results with known true values

» can test how well algorithm copes with specific data
deficiencies

» aid 1in debugging computer code, underlying ideas
* Important to mimic real data

» characteristics of measurement fluctuations (noise)

» limited resolution (blur) of signal

» systematic effects

28



Linear fit to many data

Linear model: y=a+bx

Simulate 1000 data points, o, =0.2
exact values: a=05 b5=0.5

Determine parameters by
minimizing chi-squared

Result: x... =972.0 p=0.717
4=0.496 o, =0.0126
bh=0.499 o, =0.0044

1 —0.866
R =
—0.866 1

Standard errors are reduced by
factor of 10 through data averaging

Is this reasonable?

Fit: o, =0.20;6__=0.00
ata sys

| 1000 data points

Best fit |
i
l ] it II'

il l“'. I-: ;Z il '1[ I
ok -!j,I,: l_..!! || i ]| ‘

12 MC samples ¥
| ] |"i.i-!5

LA
' il A 111
f AR . ||_ ] ]| ‘




Linear fit to many data - systematic uncertainty

* Introduce systematic offset A
with uncertainty o, =0.3

* Linear model: y=a+bx+A

« Determine parameters, a, b,
and offset A by minimizing
chi-squared (standard least-
squares analysis)

 Result: A=0

4=0.496 o, =0.300
0.499 o, =0.0044

1 —0.036
R =
{—0.036 1 }

« Same fit, but o, dominated by o,
* Uncertainty in slope still small 30



Outliers

Measurements that differ from
true value by more than expected

Often caused by mistakes

» every experimenter knows
mistakes happen!

Can accommodate in likelthood
function by including long tail

Simple model: likelihood i1s
mixture of two Gaussians
(1-4) exp{— (x—nzfz)z }Jrﬂexp{— (x—mz)z}
20 2yo
Long tail includes possibility of
large deviation from true value

Outlier-tolerant analysis generally
called “robust estimation”

—

Probability Density

0

o
o0

o
(o))

o
i

O
N

Mixture two Gaussians: , y=0.010 10

5 4 3 2 1 0 1
XIG1

> 3 4 5
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[Linear fit — outliers

Outliers pose significant problem
for min X? algorithm

Create outlier by artificially

perturbing third point

Min-X2 results in large shift of fitted

line: y’. =856 p=10"
G=0987 o,=0.180

N

b=0.402 &, =0.062
Two-Gaussian likelihood handles
outlier very well

» fit 1s nearly the same as before
a=0494 o,=0.140

b=0.520 o, =0.043

Fit: S 020, =0.0
ata 5Y5

Gaussian - best fit

2 Gaussians - best fit




239Pu cross sections — Gaussian likelihood

With Gaussian likelihood
(min X2) yields

. X2=144.7,p=0.009% for 15 DOF
2.441 +0.013

» 1mplausibly small uncertainty
given three smallest uncerts.

=~ (0.027

Each datum reduces the standard
error of result, even 1f 1t does not
agree with 1t!

» consequence of Gaussian likelthood

n
-2 -2
o= E o,
i=1

» 1ndependent of where data lie!
which doesn’t make sense

Probability, Data Set

N N W W
o (=

239Pu, 14.7 Mev

o

=
=
—
w
(i3]
=

ot on
TomE
=

(e T E Sy [ur]
0 i oo

WOy
o
-

=

[ula]
=
=]

b R T O et
W I s
G mma D

o
S S
=
]

Fission Cross Section (b)

2.6

2.8 3

Gaussian: 2.441 + 0.013
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239Pu cross sections — outlier-tolerant likelihood

« Use just latest five measurements

e Compare results from alternative
likelthoods:

» Gaussian: 2.430 +0.015
X2=13.88, p = 0.8% for 4 DOF

» two Gaussians: 2.427 +0.018
 For two-Gaussian likelihood:

» result not pulled as hard by outlier

» © 1S not as small, seemingly taking
into account discrepant nature of
data

239Pu, 14.7 Mev

—- —_ ) )
o o (o) O

Probability, Data Set

n

=

F

I R—
) —

—

! Gaussian:

2.430 + 0.015

|

3]

272

24 26 28

Fission Cross Section (b)

3

- — [y .
o n o n

Probability, Data Set

n

=

| —

A P—
I —

I Two Gaussians:
2427 £ 0.018

o

g

2.2

24 26 28

Fission Cross Section (b)
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239Pu cross sections — outlier-tolerant likelihood

. 239Pu, 14.7/ M
« Use just latest five measurements 35 o
. 30l Gaussian: |
» To exaggerate outlier problem, set 3 2.489 £0.012
25} 1
all standard errors = 0.027 8 ol 2 |
« Compare results from alternative £ 15 Vv :
. . ® |
likelihoods: s 10
5.
» Gaussian: 2.489 +0.012 . . .\M .
9) _14 2 2.2 2.4 2.6 2.8 3
Xe= 699, P = 2x10'* for 4 DOF Fission Cross Section (b)
» two Gaussians: 2.430 £ 0.022 3 Twe Gauseians.
30t
LAl - 2.430 + 0.022
» For two-Gaussian likelihood: 8 5ol :
Q]
» result 1s close to cluster of three 820t 210 L
points; outliers have little effect 517 5
: : , S 10t
» uncertainty 1is plausible | \ /\
0

22 24 26 28 3
Fission Cross Section (b)
35
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239Pu cross sections — outlier-tolerant likelihood

» To exaggerate outlier problem, set
all standard errors = 0.027, using
just latest five measurements

* Plot shows pdfs on log scale, which
shows what 1s going on with two-
Gaussian likelihood

» long tail of likelihood function for
outlier does not influence peak
shape near cluster of three
measurements; for single Gaussian,
it would make it narrower

» long tails of likelithood functions
from cluster allows outlier to
produce a small secondary peak;
has little effect on posterior mean

Two Gaussians

O8]
o O

—_—

/\ -
26 28

3

N N

it

-
n

Frobability, Data Set
=

&)

\

2 22 24 2 |
Fission Cross Section (b)

Probability, Data Set

2 22 24 26 28 3
Fission Cross Section (b)
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Hierarchical model — scale uncertainties

When data disagree a lot, we may question
whether quoted standard errors are correct

Scale all o by factors: o =s0,
Then marginalize over s
pald)= p(a,s|d)ds
plald)= [ p(d|a,s)p(a, s)ds

pla|d)o [ p(d|a,s) p(a) p(s)ds
For prior p(s), either use
noninformative (flat in log(s)) or
one like shown 1n plot

Let the data decide!

This 1s called hierarchical model
because properties of one pdf, the
likelihood, are specified by another pdf

Probability Density
o o
o o
G

O
O
N

o
o

1 > 3 4 5
Scale factor s
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239Pu cross sections — scale uncertainties

Accommodate large dispersion in
data by scaling all ¢ by factor s:
o =s0,; 0, =quoted stand. err.

For likelihood, use Gaussian with

scaled o |
p(d | x,5)o —exp[ % ]
S 25’

For prior p(s), use non-informative
prior for scaling parameter p(s)oc1/s
Bottom plot shows joint posterior pdf

Marginalize over s:
p(x|d) e | p(d | x,5) p(x) p(s)ds
to get posterior for x (top plot)

Result 1s: 2.441 + 0.024;
very plausible uncertainty

Scale factor

Probability, Data Set
N
=

S
o

239Pu, 14.7 Mev

)
o

—
O

]

2

O

7 24 26 20
Fission Cross Section (b)

joint distribution: p(x, s)

24 245 25
Fission Cross Section (b)
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239Pu cross sections — scale uncertainties

To obtain the posterior for the scaling 15
parameter s, marginalize joint posterior
OVer Xx: i
p(sld)oc [ p(d]x,5) p(x) pls)dx 3
Plot (top) shows result A
» maximum at about 1.7, ~ |-Z£ :
for original fit DOF 0 chle factor. s T
» however, this result is different from 3

joint distribution: p(x, s)

just scaling ¢ to make X2 per DOF unity 2|

» 1t allows for a distribution in s, taking
into account that s 1s uncertain

Scale factor

This model can be extended to allow
each o, to be scaled separately

: P35 24 245 25
» prior on s; could reflect our confidence Fission Cross Section (b)

in quoted o, for each experiment 39



Summary

In this tutorial:

* Types of uncertainties in measurements — random and systematic

o Uniform prior = likelihood analysis = X? analysis
« Used straight line fit to illustrate various Bayesian concepts and
models
» posterior sampling; predictive distribution and model checking
» systematic uncertainties
» averaging over many measurements

» outliers

e Studied Pu cross-section data at 14.7 MeV
» outlier-tolerant likelithood

» scaling of quoted standard errors using a distribution of scales,

which is determined by input data
40



